Search results for " Mechanical models"
showing 3 items of 3 documents
Fractional multiphase hereditary materials: Mellin Transforms and Multi-Scale Fractances
2013
The rheological features of several complex organic natural tissues such as bones, muscles as well as of complex artificial polymers are well described by power-laws. Indeed, it is well-established that the time-dependence of the stress and the strain in relaxation/creep test may be well captured by power-laws with exponent β ∈ [0, 1]. In this context a generalization of linear springs and linear dashpots has been introduced in scientific literature in terms of a mechanical device dubbed spring-pot. Recently the authors introduced a mechanical analogue to spring-pot built upon a proper arrangements of springs and dashpots that results in Elasto-Viscous (EV) materials, as β ∈ [0, 1/2] and Vi…
A discrete mechanical model of fractional hereditary materials
2013
Fractional hereditary materials are characterized for the presence, in the stress-strain relations, of fractional-order operators with order beta a[0,1]. In Di Paola and Zingales (J. Rheol. 56(5):983-1004, 2012) exact mechanical models of such materials have been extensively discussed obtaining two intervals for beta: (i) Elasto-Viscous (EV) materials for 0a parts per thousand currency sign beta a parts per thousand currency sign1/2; (ii) Visco-Elastic (VE) materials for 1/2a parts per thousand currency sign beta a parts per thousand currency sign1. These two ranges correspond to different continuous mechanical models. In this paper a discretization scheme based upon the continuous models p…
Linear and nonlinear fractional hereditary constitutive laws of asphalt mixtures
2016
The aim of this paper is to propose a fractional viscoelastic and viscoplastic model of asphalt mixtures using experimental data of several tests such as creep and creep recovery performed at different temperatures and at different stress levels. From a best fitting procedure it is shown that both the creep one and recovery curve follow a power law model. It is shown that the suitable model for asphalt mixtures is a dashpot and a fractional element arranged in series. The proposed model is also available outside of the linear domain but in this case the parameters of the model depend on the stress level.